Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If ABCD is a parallelogram, then prove that
ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╖) = ЁЭСОЁЭСЯ (ΔЁЭР╡ЁЭР╢ЁЭР╖) = ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╢) = ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╢ЁЭР╖) = `1/2` ЁЭСОЁЭСЯ (||ЁЭСФЁЭСЪ ЁЭР┤ЁЭР╡ЁЭР╢ЁЭР╖) .
рдЙрддреНрддрд░
Given: ABCDis a parallelogram
To prove : area (ΔЁЭР┤ЁЭР╡ЁЭР╖) = ЁЭСОЁЭСЯ (ΔAЁЭР╡ЁЭР╢) = are (Δ ACD)
= `1/2` ЁЭСОЁЭСЯ (||ЁЭСФЁЭСЪ ЁЭР┤ЁЭР╡ЁЭР╢ЁЭР╖)
Proof: we know that diagonals of a parallelogram divides it into two equilaterals.
Since, AC is the diagonal.
Then, ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╢) = (Δ ACD) = `1/2` ЁЭСОЁЭСЯ (||ЁЭСФЁЭСЪ ЁЭР┤ЁЭР╡ЁЭР╢ЁЭР╖)............ (1)
Since, BD is the diagonal
Then, ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╢) = ЁЭСОЁЭСЯ (ΔЁЭР╡ЁЭР╢ЁЭР╖) = `1/2` ЁЭСОЁЭСЯ (||ЁЭСФЁЭСЪ ЁЭР┤ЁЭР╡ЁЭР╢ЁЭР╖)............ (2)
Compare equation (1) and (2)
∴ ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╢) = ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╢ЁЭР╖)
= ЁЭСОЁЭСЯ (ΔЁЭР┤ЁЭР╡ЁЭР╖) = ЁЭСОЁЭСЯ (ΔЁЭР╡ЁЭР╢ЁЭР╖) = `1/2` ЁЭСОЁЭСЯ (||ЁЭСФЁЭСЪ ЁЭР┤ЁЭР╡ЁЭР╢ЁЭР╖)
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that:
ar(ΔAPB) × ar(ΔCPD) = ar(ΔAPD) × ar (ΔBPC)
PQRS is a trapezium having PS and QR as parallel sides. A is any point on PQ and B is a point on SR such that AB || QR. If area of ΔPBQ is 17cm2, find the area of ΔASR.
Let ABC be a triangle of area 24 sq. units and PQR be the triangle formed by the mid-points of the sides of Δ ABC. Then the area of ΔPQR is
The perimeter of a triangle ABC is 37 cm and the ratio between the lengths of its altitudes be 6: 5: 4. Find the lengths of its sides.
Let the sides be x cm, y cm, and (37 - x - y) cm. Also, let the lengths of altitudes be 6a cm, 5a cm, and 4a cm.
The sides of a rectangular park are in the ratio 4 : 3. If its area is 1728 m2, find
(i) its perimeter
(ii) cost of fencing it at the rate of тВ╣40 per meter.
Find the area of a rectangle whose length = 8.5 m breadth = 5 m.
By counting squares, estimate the area of the figure.
So the area of piece A = ________ square cm
Who had the bigger piece? How much bigger?
Find the area of the following figure by counting squares: