Advertisements
Advertisements
प्रश्न
If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`
उत्तर
`vec"a" xx vec"b"` is ⊥r to `vec"a"` and `vec"b"`
`vec"c" xx vec"d"` is ⊥r to `vec"c"` and `vec"d"`
Since `vec"a", vec"b", vec"c"` and `vec"d"` are coplanar.
`vec"a" xx vec"b", vec"c" xx vec"d"` are ⊥r to same plane
`vec"a" xx vec"b"` parallel to `vec"c" xx vec"d"`
⇒ `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`
APPEARS IN
संबंधित प्रश्न
Prove that `[bar"a" bar"b" + bar"c" bar"a" + bar"b" + bar"c"] = 0`
Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a" bar"b" bar"c"]`.
If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a" bar"b" bar"c"] = 0`.
Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`
Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`
If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n
If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?
If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a" bar"b" bar"c"]` = ______.
If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a" bar"b" bar"c"]` is equal to ______.
If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.
`"If" barc=3bara-2barb "and" [bara barb+barc bara+barb+barc]= 0 "then prove that" [bara barb barc]=0 `
If `overlinec = 3overlinea - 2overlineb` and `[overlinea overlineb + overlinec overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea overlineb overlinec]` = 0
Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`
If `barc = 3bara - 2barb and [bara barb+barc bara+barb+barc] = 0` then prove that `[bara barb barc] = 0`
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc = 3bara - 2barb`, then prove that `[bara barb barc]` = 0.
If, `barc = 3bara - 2barb`, then prove that `[bara barb barc] = 0`