Advertisements
Advertisements
प्रश्न
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
उत्तर
\[n\left( A \right) = 115, n\left( B \right) = 326 \text{ and } n\left( A - B \right) = 47\]
\[\text{ Now }, \]
\[n\left( A \right) - n\left( A \cap B \right) = n\left( A - B \right)\]
\[ \Rightarrow 115 - n\left( A \cap B \right) = 47\]
\[ \Rightarrow n\left( A \cap B \right) = 68\]
Thus, we get:
\[n\left( A \cup B \right) = n\left( A \right) + n\left( B \right) - n\left( A \cap B \right)\]
\[-\] 68
= 373
APPEARS IN
संबंधित प्रश्न
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{a, b} ⊄ {b, c, a}
{1, 2, 3} ⊂ {1, 3, 5}
{a} ∈ (a, b, c)
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
[6, 12]
Write the following interval in set-builder form:
(6, 12]
Write the following interval in set-builder form:
[–23, 5)
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
The number of subsets of a set containing n elements is
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
If A = {1, 3, 5, B} and B = {2, 4}, then
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a student of Class XI of your school} ____ {x : x student of your school}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Write the following interval in Set-Builder form:
(– 3, 0)
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.
State True or False for the following statement.
If A is any set, then A ⊂ A.
State True or False for the following statement.
Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.