हिंदी

If the base radius and the height of a right circular cone are increased by 20%, then the percentage increase in volume is approximately - Mathematics

Advertisements
Advertisements

प्रश्न

If the base radius and the height of a right circular cone are increased by 20%, then the percentage increase in volume is approximately

विकल्प

  • 60

  •  68

  • 73

  • 78

MCQ

उत्तर

The formula of the volume of a cone with base radius ‘r’ and vertical height ‘h’ is given as

Volume of cone = `1/3 pi r^2h`

V

It is given that the base radius and the height are increased by 20%. So now the base radius is ‘1.2r’ and the height is ‘1.2h’.

So,

The volume of the modified cone =`1/3 pi(1.2r)^2(1.2h)` 

`=1.728/3 pir^2 h`

= 1.728 V

Hence the percentage increase in the volume of the cone is 72.8%, which is approximately equal to 73%.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Surface Areas and Volume of A Right Circular Cone - Exercise 20.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 20 Surface Areas and Volume of A Right Circular Cone
Exercise 20.4 | Q 15 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×