Advertisements
Advertisements
प्रश्न
If E(x) > Var(x) then X follows _______.
विकल्प
Binomial distribution
Poisson distribution
Normal distribution
None of the above
उत्तर
If E(x) > Var(x) then X follows binomial distribution.
संबंधित प्रश्न
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
In Binomial distribution, probability of success ______ from trial to trial
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`