हिंदी

If probability of success in a single trial is 0.01. How many trials are required in order to have probability greater than 0.5 of getting at least one success? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?

योग

उत्तर

Let X = number of successes.

p = probability of success in a single trial

∴ p = 0.01

and q = 1 - p = 1 - 0.01 = 0.99

∴ X ~ B(n, 0.01)

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x q^(n - x)`

i.e. p(x) = `"^nC_x  (0.01)^x  (0.99)^(n - x)`  x = 1, 2,....,n

P(at least one success)

= P(X ≥ 1) = 1 - P(X < 1)

= 1 - P(X = 0) = 1 - p(0)

`= 1 - "^nC_0  (0.01)^0  (0.99)^(n - 0)`

`= 1 - 1(1)(0.99)^n`

`= 1 - (0.99)^n`

Given: P(X ≥ 1) > 0.5

i.e. `1 - (0.99)^n > 0.5`

i.e. 1 - 0.5 > `(0.99)^"n"`

i.e. 0.5 > `(0.99)^"n"`

i.e. `(0.99)^"n" < 0.5`

i.e. log `(0.99)^"n"` < log (0.5)

i.e. n log (0.99) < log 0.5

i.e. n < `("log"  0.5)/("log"  0.99)`

i.e. n < 68.96

∴ n = 68

Hence, the number of trials required in order to have probability greater than 0.5 of getting at least one success is `("log"  0.5)/("log"  0.99)` OR 68

shaalaa.com
Binomial Distribution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Distribution - Miscellaneous exercise 2 [पृष्ठ २५५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Binomial Distribution
Miscellaneous exercise 2 | Q 16 | पृष्ठ २५५

संबंधित प्रश्न

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.


Choose the correct option from the given alternatives:

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is


Choose the correct option from the given alternatives:

For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______


Choose the correct option from the given alternatives:

The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


Let X ~ B(10, 0.2). Find P(X = 1).


Let X ~ B(10, 0.2). Find P(X ≥ 1).


Let X ~ B(10, 0.2). Find P(X ≤ 8).


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre


A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?


An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 


The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.

Find the probability that the visitor obtains answer yes from at least 2 pupils:

  1. when the number of pupils questioned remains at 4.
  2. when the number of pupils questioned is increased to 8.

It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.


In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.


In Binomial distribution, probability of success ______ from trial to trial


State whether the following statement is True or False:

For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×