English

If probability of success in a single trial is 0.01. How many trials are required in order to have probability greater than 0.5 of getting at least one success? - Mathematics and Statistics

Advertisements
Advertisements

Question

If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?

Sum

Solution

Let X = number of successes.

p = probability of success in a single trial

∴ p = 0.01

and q = 1 - p = 1 - 0.01 = 0.99

∴ X ~ B(n, 0.01)

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x q^(n - x)`

i.e. p(x) = `"^nC_x  (0.01)^x  (0.99)^(n - x)`  x = 1, 2,....,n

P(at least one success)

= P(X ≥ 1) = 1 - P(X < 1)

= 1 - P(X = 0) = 1 - p(0)

`= 1 - "^nC_0  (0.01)^0  (0.99)^(n - 0)`

`= 1 - 1(1)(0.99)^n`

`= 1 - (0.99)^n`

Given: P(X ≥ 1) > 0.5

i.e. `1 - (0.99)^n > 0.5`

i.e. 1 - 0.5 > `(0.99)^"n"`

i.e. 0.5 > `(0.99)^"n"`

i.e. `(0.99)^"n" < 0.5`

i.e. log `(0.99)^"n"` < log (0.5)

i.e. n log (0.99) < log 0.5

i.e. n < `("log"  0.5)/("log"  0.99)`

i.e. n < 68.96

∴ n = 68

Hence, the number of trials required in order to have probability greater than 0.5 of getting at least one success is `("log"  0.5)/("log"  0.99)` OR 68

shaalaa.com
Binomial Distribution
  Is there an error in this question or solution?
Chapter 8: Binomial Distribution - Miscellaneous exercise 2 [Page 255]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Binomial Distribution
Miscellaneous exercise 2 | Q 16 | Page 255

RELATED QUESTIONS

A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.


Choose the correct option from the given alternatives:

The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.


The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.


A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?


The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.

Find the probability that the visitor obtains answer yes from at least 2 pupils:

  1. when the number of pupils questioned remains at 4.
  2. when the number of pupils questioned is increased to 8.

In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.


If E(x) > Var(x) then X follows _______.


Fill in the blank :

In Binomial distribution probability of success Remains constant / independent from trial to trial.


Solve the following problem:

An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,

  1. the student gets 4 or more correct answers.
  2. the student gets less than 4 correct answers.

In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.


In Binomial distribution, probability of success ______ from trial to trial


State whether the following statement is True or False:

For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m


If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×