Advertisements
Advertisements
Question
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre
Solution
Let X = number of burst tyre.
p = probability that a mountain-bike travelling along a certain track will have a tyre burst
∴ p = 0.05
∴ q = 1 - p = 1 - 0.05 = 0.95
Given: n = 17
∴ X ~ B(17, 0.05)
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^17C_x (0.05)^x (0.95)^(17 - x)`, x = 0, 1, 2,...,17
P (at most three have a burst tyre) = P(X ≤ 3)
= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= p(0) + p(1) + p(2) + p(3)
`= ""^17C_0 (0.05)^0(0.95)^(17-0) + ""^17C_1 (0.05)^1 (0.17)^(17 - 1) + ""^17C_2 (0.05)^2 (0.17)^(17 - 2) + "^17C_3 (0.05)^3 (0.17)^(17 - 3)`
`= 1(1)(0.95)^17 + 17(0.05)(0.95)^16 + (17 xx 16)/(2 xx 1) xx (0.05)^2 (0.95)^15 + (17 xx 16 xx 15)/(3 xx 2 xx 1) xx (0.05)^3 xx (0.95)^14`
`= (0.95)^17 + 17(0.05) xx (0.95)^16 + 17(8) xx (0.05)^2 xx (0.95)^15 + 17(8)(5) xx (0.05)^3 xx (0.95)^14`
`= (0.95)^14 [(0.95)^3 + (17)(0.05)(0.95)^2 + 17(8) xx (0.05)^2 xx (0.95)^1 + 17(8)(5)(0.05)^3]`
`= (0.95)^14 [0.8574 + 0.7671 + 0.323 + 0.085]`
`= (2.0325)(0.95)^14`
Hence, the probability that at most three riders have burst tyre `= (2.0325)(0.95)^14`
APPEARS IN
RELATED QUESTIONS
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
Let X ~ B(10, 0.2). Find P(X ≤ 8).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Find the probability that the visitor obtains answer yes from at least 2 pupils:
- when the number of pupils questioned remains at 4.
- when the number of pupils questioned is increased to 8.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
Solve the following problem:
An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,
- the student gets 4 or more correct answers.
- the student gets less than 4 correct answers.
Choose the correct alternative:
A sequence of dichotomous experiments is called a sequence of Bernoulli trials if it satisfies ______
In Binomial distribution, probability of success ______ from trial to trial
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.
In a binomial distribution, n = 4 and 2P(X = 3) = 3P(X = 2), then q = ______.