Advertisements
Advertisements
Question
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
Solution
Let X = number of a defective electronic device.
p = probability that a device is defective
∴ p = 3% = `3/100`
∴ q = 1 - p = `1 - 3/100 = 97/100`
Given: n = 20
∴ X ~ B `(20, 3/100)`
The p.m.f. of X is given as :
P[X = x] = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^20C_x (3/100)^x (97/100)^(20 - x)`
P (store will receive at most one defective item)
= P[X ≤ 1] = p[X = 0] + P[X = 1]
= p(0) + p(1)
`= ""^20C_0 (3/100)^0 (97/100)^(20 - 0) + "^20C_1 (3/100)^1 (97/100)^(20 - 1)`
`= 1 xx 1 xx (0.97)^20 + 20xx (0.03) xx (0.97)^19`
`= (0.97 + 0.6)(0.97)^19`
`= (1.57)(0.97)^19`
Hence, the probability that the store will receive at most one defective item `= (1.57)(0.97)^19`
[Note: Answer in the textbook is incorrect.]
APPEARS IN
RELATED QUESTIONS
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Find the probability that the visitor obtains answer yes from at least 2 pupils:
- when the number of pupils questioned remains at 4.
- when the number of pupils questioned is increased to 8.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution, n = 4 and 2P(X = 3) = 3P(X = 2), then q = ______.