Advertisements
Advertisements
प्रश्न
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
उत्तर
Let X = number of a defective electronic device.
p = probability that a device is defective
∴ p = 3% = `3/100`
∴ q = 1 - p = `1 - 3/100 = 97/100`
Given: n = 20
∴ X ~ B `(20, 3/100)`
The p.m.f. of X is given as :
P[X = x] = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^20C_x (3/100)^x (97/100)^(20 - x)`
P (store will receive at most one defective item)
= P[X ≤ 1] = p[X = 0] + P[X = 1]
= p(0) + p(1)
`= ""^20C_0 (3/100)^0 (97/100)^(20 - 0) + "^20C_1 (3/100)^1 (97/100)^(20 - 1)`
`= 1 xx 1 xx (0.97)^20 + 20xx (0.03) xx (0.97)^19`
`= (0.97 + 0.6)(0.97)^19`
`= (1.57)(0.97)^19`
Hence, the probability that the store will receive at most one defective item `= (1.57)(0.97)^19`
[Note: Answer in the textbook is incorrect.]
APPEARS IN
संबंधित प्रश्न
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X ≤ 8).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
If E(x) > Var(x) then X follows _______.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`