Advertisements
Advertisements
प्रश्न
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
उत्तर
Let X = number of terminals which required attention during a week.
p = probability that any terminal will require attention during a week
∴ p = 0.1
and q = 1 - p = 1 - 0.1 = 0.9
Given: n = 10
∴ X ~ B (10, 0.1)
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^10C_x (0.1)^x (0.9)^(10 - x)`, x = 0, 1, 2,...,10
P(no terminal will require attention) = P(X = 0)
`= "p"(0) = "^10C_0 (0.1)^0 (0.9)^(10 - 0)`
`= 1 xx 1 xx (0.9)^10 = (0.9)^10`
Hence, the probability that no terminal requires attention `(0.9)^10`
APPEARS IN
संबंधित प्रश्न
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
If E(x) > Var(x) then X follows _______.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
In Binomial distribution, probability of success ______ from trial to trial
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`