Advertisements
Advertisements
प्रश्न
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
उत्तर
Let X = number of terminals which required attention during a week.
p = probability that any terminal will require attention during a week
∴ p = 0.1
and q = 1 - p = 1 - 0.1 = 0.9
Given: n = 10
∴ X ~ B(10, 0.1)
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^10C_x (0.1)^x (0.9)^(10 - x)` x = 0, 1, 2,...,10
P(3 or more terminals will require attention)
= P(X ≥ 3)
= 1 - P(x < 3)
= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]
= 1 - [p(0) + p(1) + p(2)]
= `1 - [(0.9)^40 + (0.9) + (0.45)(0.9)^8]`
`= 1 -[(0.9)^2 + (0.9)^4 + 0.45](0.9)^8`
= 1 - [0.81 + 0.9 + 0.45](0.9)8
= 1 - (2.16) × (0.9)8
Hence, the probability that 3 or more terminals require attention = 1 - (2.16) × (0.9)8
APPEARS IN
संबंधित प्रश्न
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Find the probability that the visitor obtains answer yes from at least 2 pupils:
- when the number of pupils questioned remains at 4.
- when the number of pupils questioned is increased to 8.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
If E(x) > Var(x) then X follows _______.
Fill in the blank :
In Binomial distribution probability of success Remains constant / independent from trial to trial.
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
Solve the following problem:
An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,
- the student gets 4 or more correct answers.
- the student gets less than 4 correct answers.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
In Binomial distribution, probability of success ______ from trial to trial
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.