मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre

बेरीज

उत्तर

Let X = number of burst tyre.

p = probability that a mountain-bike travelling along a certain track will have a tyre burst

∴ p = 0.05

∴ q = 1 - p = 1 - 0.05 = 0.95

Given: n = 17

∴ X ~ B(17, 0.05)

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x  q^(n - x)`

i.e. p(x) = `"^17C_x (0.05)^x (0.95)^(17 - x)`, x = 0, 1, 2,...,17

P (at most three have a burst tyre) = P(X ≤ 3)

= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

= p(0) + p(1) + p(2) + p(3)

`= ""^17C_0 (0.05)^0(0.95)^(17-0) + ""^17C_1 (0.05)^1 (0.17)^(17 - 1) + ""^17C_2 (0.05)^2 (0.17)^(17 - 2) + "^17C_3 (0.05)^3 (0.17)^(17 - 3)`

`= 1(1)(0.95)^17 + 17(0.05)(0.95)^16 + (17 xx 16)/(2 xx 1) xx (0.05)^2 (0.95)^15 + (17 xx 16 xx 15)/(3 xx 2 xx 1) xx (0.05)^3 xx (0.95)^14`

`= (0.95)^17 + 17(0.05) xx (0.95)^16 + 17(8) xx (0.05)^2 xx (0.95)^15 + 17(8)(5) xx (0.05)^3 xx (0.95)^14`

`= (0.95)^14 [(0.95)^3 + (17)(0.05)(0.95)^2 + 17(8) xx (0.05)^2 xx (0.95)^1 + 17(8)(5)(0.05)^3]`

`= (0.95)^14 [0.8574 + 0.7671 + 0.323 + 0.085]`

`= (2.0325)(0.95)^14`

Hence, the probability that at most three riders have burst tyre `= (2.0325)(0.95)^14` 

shaalaa.com
Binomial Distribution
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Distribution - Miscellaneous exercise 2 [पृष्ठ २५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Binomial Distribution
Miscellaneous exercise 2 | Q 5.2 | पृष्ठ २५४

संबंधित प्रश्‍न

A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes. 


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.


Choose the correct option from the given alternatives:

A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.


Choose the correct option from the given alternatives:

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is


Let X ~ B(10, 0.2). Find P(X ≥ 1).


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.


A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?


An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.

Find the probability that the visitor obtains answer yes from at least 2 pupils:

  1. when the number of pupils questioned remains at 4.
  2. when the number of pupils questioned is increased to 8.

It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.


Fill in the blank :

In Binomial distribution probability of success Remains constant / independent from trial to trial.


In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.


In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.


If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).


In Binomial distribution, probability of success ______ from trial to trial


In a binomial distribution, n = 4 and 2P(X = 3) = 3P(X = 2), then q = ______.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.

Solution:

A pair of dice is thrown 3 times.

∴ n = 3

Let x = number of success (doublets)

p = probability of success (doublets)

∴  p = `square`, q = `square`

∴ x ∼ B (n, p)

P(x) = nCxpx qn–x

Probability of getting at least two success means x ≥ 2.

∴ P(x ≥ 2) = P(x = 2) + P(x = 3)

= `square` + `square`

= `2/27`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×