Advertisements
Advertisements
प्रश्न
Solve the following problem:
An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,
- the student gets 4 or more correct answers.
- the student gets less than 4 correct answers.
उत्तर
Let x = Number of correct answer
p = Probability of guessing correct answer
∴ p = `(1)/(4)`
q = 1 – p
= `1 - (1)/(4)`
= `(3)/(4)`
Here, n = 5
∴ X ~ B(n, p)
∴ X ~ B`(5","1/4)`
For binomial distribution
p(x) = nCx, px. qn–x
The p.m.f. of X is given by
`"P"("X" = x) = ""^5"C"_x (1/4)^x (3/4)^(5-x)`, x = 0, 1, ...., 5
a. Probability that student gets 4 or more correct answers
= P(X ≥ 4)
= P(X = 4) or P(X = 5)
= 5C4.p4.q1 + 5C5 p5.q0
= `(5!)/(4!1!) (1/4)^4 (3/4) + 5/(5!0!) (1/4)^5 (3/4)^0`
= `(5 xx 3)/4^5 + 1/4^5`
= `15/1024 + 1/1024`
= `16/1024`
= `1/64`
b. Probability that student gets less than 4 correct answer:
= P(X < 4)
= 1 – P(X ≥ 4)
= `1 - 1/64`
= `63/64`
Notes
Let X denote the number of correct questions. Since only one of 4 suggested answers is correct
APPEARS IN
संबंधित प्रश्न
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
In Binomial distribution, probability of success ______ from trial to trial
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.