मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.

बेरीज

उत्तर

Let X = number of machines that develop a fault.

p = probability that a machine develops a fault within the first 3 years of use

∴ p = 0.003

and q = 1 - p = 1 - 0.003 = 0.997

Given: n = 40

∴ X ~ B (40, 0.003)

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x  q^(n - x)`, x = 0, 1, 2,...,n

i.e. p(x) = `"^40C_x  (0.003)^x  (0.997)^(40 - x)`, x = 0, 1, 2, ....,40

P(38 or more machines will develop any fault)

= P(X ≥ 38) = P(X = 38) + P(X = 39) + P(X = 40)

= p(38) + p(39) + p(40)

`= ""^40C_38 (0.003)^38 (0.997)^(40 - 38) + ""^40C_39 (0.003)^39 (0.997)^(40 - 39) + "^40C_40 (0.003)^40 (0.997)^0`

`= (40 xx 39)/(2 xx 1) (0.003)^38 (0.997)^2 + 40(0.003)^39 (0.997)^1 + 1 * (0.003)^40 (0.997)^0`

`= (780)(0.003)^38 (0.997)^2 + (40) (0.003)^39 (0.997) + 1 xx (0.003)^40 xx 1`

`= (0.003)^38 [(780)(0.997)^2 + 40(0.003)(0.997) + (0.003)^2]`

`= (0.003)^38 [775.327 + 0.1196 + 0.000009]`

`= (0.003)^38 (775.446609)`

`= (775.446609)(0.003)^38`

`≈ (775.44)(0.003)^38`

Hence, the probability that 38 or more machines will not develop the fault within 3 years of use = ` (775.44)(0.003)^38`.

shaalaa.com
Binomial Distribution
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Distribution - Miscellaneous exercise 2 [पृष्ठ २५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Binomial Distribution
Miscellaneous exercise 2 | Q 12 | पृष्ठ २५४

संबंधित प्रश्‍न

A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes. 


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.


Choose the correct option from the given alternatives:

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is


Choose the correct option from the given alternatives:

For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


Let X ~ B(10, 0.2). Find P(X ≤ 8).


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.


The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.


A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?


A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.


It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.


In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.


If E(x) > Var(x) then X follows _______.


In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.


If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).


Choose the correct alternative:

A sequence of dichotomous experiments is called a sequence of Bernoulli trials if it satisfies ______


In Binomial distribution, probability of success ______ from trial to trial


If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.


If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______ 


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.

Solution:

A pair of dice is thrown 3 times.

∴ n = 3

Let x = number of success (doublets)

p = probability of success (doublets)

∴  p = `square`, q = `square`

∴ x ∼ B (n, p)

P(x) = nCxpx qn–x

Probability of getting at least two success means x ≥ 2.

∴ P(x ≥ 2) = P(x = 2) + P(x = 3)

= `square` + `square`

= `2/27`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×