Advertisements
Advertisements
प्रश्न
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.
उत्तर
Let X = number of machines that develop a fault.
p = probability that a machine develops a fault within the first 3 years of use
∴ p = 0.003
and q = 1 - p = 1 - 0.003 = 0.997
Given: n = 40
∴ X ~ B (40, 0.003)
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`, x = 0, 1, 2,...,n
i.e. p(x) = `"^40C_x (0.003)^x (0.997)^(40 - x)`, x = 0, 1, 2, ....,40
P(38 or more machines will develop any fault)
= P(X ≥ 38) = P(X = 38) + P(X = 39) + P(X = 40)
= p(38) + p(39) + p(40)
`= ""^40C_38 (0.003)^38 (0.997)^(40 - 38) + ""^40C_39 (0.003)^39 (0.997)^(40 - 39) + "^40C_40 (0.003)^40 (0.997)^0`
`= (40 xx 39)/(2 xx 1) (0.003)^38 (0.997)^2 + 40(0.003)^39 (0.997)^1 + 1 * (0.003)^40 (0.997)^0`
`= (780)(0.003)^38 (0.997)^2 + (40) (0.003)^39 (0.997) + 1 xx (0.003)^40 xx 1`
`= (0.003)^38 [(780)(0.997)^2 + 40(0.003)(0.997) + (0.003)^2]`
`= (0.003)^38 [775.327 + 0.1196 + 0.000009]`
`= (0.003)^38 (775.446609)`
`= (775.446609)(0.003)^38`
`≈ (775.44)(0.003)^38`
Hence, the probability that 38 or more machines will not develop the fault within 3 years of use = ` (775.44)(0.003)^38`.
APPEARS IN
संबंधित प्रश्न
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
If E(x) > Var(x) then X follows _______.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
Choose the correct alternative:
A sequence of dichotomous experiments is called a sequence of Bernoulli trials if it satisfies ______
In Binomial distribution, probability of success ______ from trial to trial
If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`