हिंदी

The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 

योग

उत्तर

Let X = number of machines that produce the bolts within specification.

p = probability that a machine produce bolts within specification

p = 0.998 and q = 1 − p = 1 − 0.998 = 0.002

Given: n = 8

∴ X ~ B (8, 0.998)

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x  q^(n - x)`

i.e. p(x) = `"^8C_x  (0.998)^x  (0.002)^(8 - x)`, x = 0, 1, 2, ..., 8

P(at most 6 machines will produce all bolts with specification) = P[X ≤ 6]

= 1 − P[x > 6]

= 1 − [P (X = 7) + P(X = 8)]

= 1 − [P(7) + P(8)]

= 1 − (1.014)(0.998)7

Hence, the probability that at most 6 machines will produce all bolts with specification = 1 − (1.014)(0.998)7.

shaalaa.com
Binomial Distribution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Distribution - Miscellaneous exercise 2 [पृष्ठ २५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Binomial Distribution
Miscellaneous exercise 2 | Q 11.3 | पृष्ठ २५४

संबंधित प्रश्न

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes. 


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.


Choose the correct option from the given alternatives:

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is


Choose the correct option from the given alternatives:

For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______


If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.


Choose the correct option from the given alternatives:

The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


Let X ~ B(10, 0.2). Find P(X ≥ 1).


Let X ~ B(10, 0.2). Find P(X ≤ 8).


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre


The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.


A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.


The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.

Find the probability that the visitor obtains answer yes from at least 2 pupils:

  1. when the number of pupils questioned remains at 4.
  2. when the number of pupils questioned is increased to 8.

It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.


In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.


If E(x) > Var(x) then X follows _______.


In Binomial distribution, probability of success ______ from trial to trial


If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.


If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.


In a binomial distribution, n = 4 and 2P(X = 3) = 3P(X = 2), then q = ______.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.

Solution:

A pair of dice is thrown 3 times.

∴ n = 3

Let x = number of success (doublets)

p = probability of success (doublets)

∴  p = `square`, q = `square`

∴ x ∼ B (n, p)

P(x) = nCxpx qn–x

Probability of getting at least two success means x ≥ 2.

∴ P(x ≥ 2) = P(x = 2) + P(x = 3)

= `square` + `square`

= `2/27`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×