Advertisements
Advertisements
Question
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
Solution
Let X = number of machines that produce the bolts within specification.
p = probability that a machine produce bolts within specification
p = 0.998 and q = 1 − p = 1 − 0.998 = 0.002
Given: n = 8
∴ X ~ B (8, 0.998)
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^8C_x (0.998)^x (0.002)^(8 - x)`, x = 0, 1, 2, ..., 8
P(at most 6 machines will produce all bolts with specification) = P[X ≤ 6]
= 1 − P[x > 6]
= 1 − [P (X = 7) + P(X = 8)]
= 1 − [P(7) + P(8)]
= 1 − (1.014)(0.998)7
Hence, the probability that at most 6 machines will produce all bolts with specification = 1 − (1.014)(0.998)7.
APPEARS IN
RELATED QUESTIONS
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that none is a spade.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
Let X ~ B(10, 0.2). Find P(X ≤ 8).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Find the probability that the visitor obtains answer yes from at least 2 pupils:
- when the number of pupils questioned remains at 4.
- when the number of pupils questioned is increased to 8.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.
In a binomial distribution, n = 4 and 2P(X = 3) = 3P(X = 2), then q = ______.