English

In binomial distribution with five Bernoulli’s trials,probability of one and two success are 0.4096 and 0.2048 respectively. Find probability of success. - Mathematics and Statistics

Advertisements
Advertisements

Question

In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.

Sum

Solution

Given: X ~ B(n = 5, p)

The probability of X successes is

P(X = x) = `"^nC_x  p^x  q^(n - x)`, x = 0, 1, 2,...,n

i.e. P(X = x) = `"^5C_x  p^x  q^(5 - x)`, x = 0, 1, 2, 3, 4, 5

Probabilities of one and two successes are

P(X = 1) = `"^5C_1  p^1  q^(5 - 1)`

and P(X = 2) = `"^5C_2  p^2  q^(5 - 2)` respectively

Given: P(X = 1) = 0.4096 and P(X = 2) = 0.2048

∴ `("P"("X" = 2))/("P"("X" = 1)) = 0.2048/0.4096`

i.e. `(""^5C_2  p^2  q^(5 - 2))/("^5C_1  p^2  q^(5 - 1)) = 1/2`

i.e. `2 xx ""^5C_2  p^2  q^3 = 1 xx ""^5C_1  "pq"^4`  

i.e. `2 xx (5 xx 4)/(1 xx 2) xx "p"^2 "q"^3 = 1 xx 5 xx "pq"^4`

i.e. `20 "p"^2"q"^3 = 5"pq"^4`

i.e. 4p = q

i.e. 4p = 1 - p

i.e. 5p = 1

∴ p = `1/5`

Hence, the probability of success is `1/5`.

shaalaa.com
Binomial Distribution
  Is there an error in this question or solution?
Chapter 8: Binomial Distribution - Miscellaneous exercise 2 [Page 255]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Binomial Distribution
Miscellaneous exercise 2 | Q 17 | Page 255

RELATED QUESTIONS

A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.


Choose the correct option from the given alternatives:

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is


Choose the correct option from the given alternatives:

For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______


Choose the correct option from the given alternatives:

For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______


If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


Let X ~ B(10, 0.2). Find P(X = 1).


Let X ~ B(10, 0.2). Find P(X ≥ 1).


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.


The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.


A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?


An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.


If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?


If E(x) > Var(x) then X follows _______.


In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.


In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.


If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).


State whether the following statement is True or False:

For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m


If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______ 


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.

Solution:

A pair of dice is thrown 3 times.

∴ n = 3

Let x = number of success (doublets)

p = probability of success (doublets)

∴  p = `square`, q = `square`

∴ x ∼ B (n, p)

P(x) = nCxpx qn–x

Probability of getting at least two success means x ≥ 2.

∴ P(x ≥ 2) = P(x = 2) + P(x = 3)

= `square` + `square`

= `2/27`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×