Advertisements
Advertisements
Question
In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.
Solution
Given: X ~ B(n = 5, p)
The probability of X successes is
P(X = x) = `"^nC_x p^x q^(n - x)`, x = 0, 1, 2,...,n
i.e. P(X = x) = `"^5C_x p^x q^(5 - x)`, x = 0, 1, 2, 3, 4, 5
Probabilities of one and two successes are
P(X = 1) = `"^5C_1 p^1 q^(5 - 1)`
and P(X = 2) = `"^5C_2 p^2 q^(5 - 2)` respectively
Given: P(X = 1) = 0.4096 and P(X = 2) = 0.2048
∴ `("P"("X" = 2))/("P"("X" = 1)) = 0.2048/0.4096`
i.e. `(""^5C_2 p^2 q^(5 - 2))/("^5C_1 p^2 q^(5 - 1)) = 1/2`
i.e. `2 xx ""^5C_2 p^2 q^3 = 1 xx ""^5C_1 "pq"^4`
i.e. `2 xx (5 xx 4)/(1 xx 2) xx "p"^2 "q"^3 = 1 xx 5 xx "pq"^4`
i.e. `20 "p"^2"q"^3 = 5"pq"^4`
i.e. 4p = q
i.e. 4p = 1 - p
i.e. 5p = 1
∴ p = `1/5`
Hence, the probability of success is `1/5`.
APPEARS IN
RELATED QUESTIONS
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Choose the correct option from the given alternatives:
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
If E(x) > Var(x) then X follows _______.
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`