Advertisements
Advertisements
Question
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.
Solution
Let X = number of working discs.
p = probability that a floppy disc works
∴ p = 95% = `95/100 = 19/20`
and q = 1 - p = `1 - 19/20 = 1/20`
Given: n = 3
∴ X ~ B`(3, 19/20)`
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^3C_x (19/20)^x (1/20)^(3-x)`, x = 0, 1, 2, 3
P(exactly two floppy discs work) = P(X = 2)
= p(2) = `"^3C_2 (19/20)^2 (1/20)^(3 - 2)`
`= (3* 2!)/(2! * 1!) xx (19)^2/(20)^2 xx (1/20)`
`= 3(19^2/20^3)`
Hence, the probability that none of the floppy disc will work = 3`(19^2/20^3)`
APPEARS IN
RELATED QUESTIONS
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
If E(x) > Var(x) then X follows _______.
Fill in the blank :
In Binomial distribution probability of success Remains constant / independent from trial to trial.
Solve the following problem:
An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,
- the student gets 4 or more correct answers.
- the student gets less than 4 correct answers.
Choose the correct alternative:
A sequence of dichotomous experiments is called a sequence of Bernoulli trials if it satisfies ______
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.