हिंदी

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.

योग

उत्तर

Let X = number of bombs hitting the target.

p = probability that bomb will hit the target

∴ p = 0.8 = `8/10 = 4/5`

∴ q = 1 - p = `1 - 4/5 = 1/5`

Given: n = 10

∴ X ~ B `(10, 4/5)`

The p.m.f. of X is given as :

P[X = x] = `"^nC_x  p^x  q^(n - x)`

i.e. p(x) = `"^10C_x (4/5)^x (1/5)^(10 - x)`

P (exactly 2 bombs will miss the target) 

= P (exactly 8 bombs will hit the target)

= P[X = 8] = p(8)

`= "^10C_8 (4/5)^8 (1/5)^(10 - 8)`

`= "^10C_2 (4/5)^8 (1/5)^2   ....[because "^nC_x = "^nC_(n - x)]`

`= (10 xx 9)/(1 xx 2) xx 4^8/5^10 = (45 xx 4^8)/5^10 = 45(2^16/5^10)`

Hence, the probability that exactly 2 bombs will miss the target = `45(2^16/5^10)`

shaalaa.com

Notes

The answer in the textbook is incorrect.

Binomial Distribution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Distribution - Miscellaneous exercise 2 [पृष्ठ २५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Binomial Distribution
Miscellaneous exercise 2 | Q 4 | पृष्ठ २५४

संबंधित प्रश्न

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly two of the next four components tested will survive.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of 5 successes. 


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.


A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly two floppy disc work.


In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.


Choose the correct option from the given alternatives:

A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.


Choose the correct option from the given alternatives:

For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______


Choose the correct option from the given alternatives:

For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______


Choose the correct option from the given alternatives:

The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?


If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ______.


Let X ~ B(10, 0.2). Find P(X ≤ 8).


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre


The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.


A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?


An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.


The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification. 


A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.


In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.


It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.


If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?


In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.


If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).


In Binomial distribution, probability of success ______ from trial to trial


In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.


If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×