Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
विकल्प
`sqrt50`
5
25
10
उत्तर
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is 5.
Explanation:
n = 100
p(getting even number) = `3/6 = 1/2`
q(not even number) = `3/6 = 1/2`
SD = `sqrt(variance(x)) = sqrt(npq)`
= `sqrt(100 xx 1/2 xx 1/2)`
= `sqrt25`
= 5
APPEARS IN
संबंधित प्रश्न
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5 successes.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at most 5 successes.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that only 3 cards are spades
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3), then p = ______
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
Let X ~ B(10, 0.2). Find P(X = 1).
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: at most three have a burst tyre
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate morals.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will not develop any faults within the first 3 years of use.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 1.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
Solve the following problem:
An examination consists of 5 multiple choice questions, in each of which the candidate has to decide which one of 4 suggested answers is correct. A completely unprepared student guesses each answer completely randomly. Find the probability that,
- the student gets 4 or more correct answers.
- the student gets less than 4 correct answers.
In a Binomial distribution with n = 4, if 2P(X = 3) = 3P(X = 2), then value of p is ______.
In Binomial distribution, probability of success ______ from trial to trial
If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.
If X follows a binomial distribution with parameters n = 10 and p. If 4P(X = 6) = P(X = 4), then p = ______
If X∼B (n, p) with n = 10, p = 0.4 then E(X2) = ______.