Advertisements
Advertisements
प्रश्न
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the class-room. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
उत्तर
Let X = number of lamps burnt out in the classroom.
p = probability of a lamp in a classroom will be burnt
∴ p = `0.3 = 3/10`
∴ q = 1 - p = `1 - 3/10 = 7/10`
Given: n = 6
∴ X ~ B`(6, 3/10)`
The p.m.f. of X is given as:
P[X = x] = `"^nC_x p^x q^(n - x)`
i.e. p(x) = `"^6C_x (3/10)^x (7/10)^(6 - x)`
Since, the classroom is unusable if the number of lamps burning in it is less than four, therefore
P (classroom cannot be used)
= P[X < 4] = P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3]
= p(0) + p(1) + p(2) + p(3)
`= ""^6C_0 (3/10)^0 (7/10)^(6 - 0) + ""^6C_1 (3/10)^1 (7/10)^(6 - 1) + ""^6C_2 (3/10)^2 (7/10)^(6 - 2) + "^6C_3 (3/10)^3 (7/10)^(6 - 3)`
`= 1 xx 1 xx (7/10)^6 + 6(3/10) (7/10)^5 + (6 xx 5)/(1 xx 2) * (3/10)^2 (7/10)^4 + (6 xx 5 xx 4)/(1 xx 2 xx 3) * (3/10)^3 (7/10)^3`
`= [7^6 + 18 xx 7^5 + 15 xx 9 xx 7^4 + 20xx 27 xx 7^3] 1/10^6`
`= (117649 + 302526 + 324135 + 185220)/10^6`
`= 929530/10^6 = 0.92953`
Hence, the probability that the classroom cannot be used on a random occasion is 0.92953.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards; find the probability that all the five cards are spades.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that none of the floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that exactly one floppy disc work.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that all 3 of the sample will work.
Choose the correct option from the given alternatives:
A die is thrown 100 times. If getting an even number is considered a success, then the standard deviation of the number of successes is ______.
Choose the correct option from the given alternatives:
For a binomial distribution, n = 4. If 2P(X = 3) = 3P(X = 2), then p = ______
If X ~ B(4, p) and P(X = 0) = `16/81`, then P(X = 4) = ______.
Choose the correct option from the given alternatives:
The probability of a shooter hitting a target is `3/4` How many minimum numbers of times must he fire so that the probability of hitting the target at least once is more than 0·99?
Let X ~ B(10, 0.2). Find P(X = 1).
Let X ~ B(10, 0.2). Find P(X ≥ 1).
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: exactly one has a burst tyre
The probability that a mountain-bike travelling along a certain track will have a tyre burst is 0.05. Find the probability that among 17 riders: two or more have burst tyre.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that all 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that 7 or 8 machines.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that at most 6 machines will produce all bolts within specification.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 0.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 2.
A computer installation has 10 terminals. Independently, the probability that any one terminal will require attention during a week is 0.1. Find the probabilities that 3 or more, terminals will require attention during the next week.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
Find the probability that the visitor obtains answer yes from at least 2 pupils:
- when the number of pupils questioned remains at 4.
- when the number of pupils questioned is increased to 8.
It is observed that it rains on 12 days out of 30 days. Find the probability that it rains exactly 3 days of week.
It is observed that it rains on 12 days out of 30 days. Find the probability that it it will rain at least 2 days of given week.
In Binomial distribution if n is very large and probability success of p is very small such that np = m (constant) then _______ distribution is applied.
If X ~ B(n, p) with n = 10, p = 0.4, then find E(X2).
Choose the correct alternative:
A sequence of dichotomous experiments is called a sequence of Bernoulli trials if it satisfies ______
In Binomial distribution, probability of success ______ from trial to trial
State whether the following statement is True or False:
For the Binomial distribution, Mean E(X) = m and Variance = Var(X) = m
If the sum of the mean and the variance of a binomial distribution for 5 trials Is 1.8, then p = ______.
In a binomial distribution `B(n, p = 1/4)`, if the probability of at least one success is greater than or equal to `9/10`, then n is greater than ______.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of getting at least two success.
Solution:
A pair of dice is thrown 3 times.
∴ n = 3
Let x = number of success (doublets)
p = probability of success (doublets)
∴ p = `square`, q = `square`
∴ x ∼ B (n, p)
P(x) = nCxpx qn–x
Probability of getting at least two success means x ≥ 2.
∴ P(x ≥ 2) = P(x = 2) + P(x = 3)
= `square` + `square`
= `2/27`