Advertisements
Advertisements
प्रश्न
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
उत्तर
`int_0^h "dx"/(2 + "8x"^2) = pi/16`
`1/8 int_0^h "dx"/((1/2)^2 + "x"^2) = pi/16`
`int_0^"h" "dx"/("x"^2 + "h"^2) = pi/2`
`2 "tan"^-1 (2"x")]_0^"h" = pi/2`
`2 "tan"^-1 2 "h" = pi/2`
`"tan"^-1 "2h" = pi/4`
2h = 1
h = `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
`int_1^(sqrt3)dx/(1+x^2) ` equals:
`int_0^(2/3) dx/(4+9x^2)` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_6^(2/3) (dx)/(4 + 9x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`