Advertisements
Advertisements
प्रश्न
If `p(m) = m^3 + 2m^2 - m + 10` then `p(a) + p(-a) =` ?
उत्तर
`p(m) = m^3 + 2m^2 - m + 10`
`therefore p(a) = a^3 + 2a^2 - a +10` ...(1)
Also,
`p(-a) = (-a)^3 + 2(-a)^2 - (-a)+10`
`=> p(-a) = -a^3+ 2a^2 + a + 10 ` ...(2)
Adding (1) and (2), we get
`p(a) + p(-a)`
`= (a^3 + 2a^2 - a +10) + (-a^3+ 2a^2 + a + 10)`
`= a^3 - a^3 + 2a^2 + 2a^2 - a + a + 10 + 10`
`= 4a^2 + 20`
` therefore p(a) + p(-a) = 4a^2 + 20 `
APPEARS IN
संबंधित प्रश्न
If `p(y) =y^2 - 3sqrt2y + 1` then find `p (3sqrt 2)`.
If p(y) = 2y3 − 6y2 − 5y + 7 then find p(2).
Find the value of the polynomial 2x − 2x3 + 7 using given values for x.
x = 0
For the following polynomial, find p(1), p(0) and p(-2).
p(y) = y2 − 2y + 5
For the polynomial mx2 − 2x + 3 if p(−1) = 7 then find m.
If `p(x) = 2x^2 - 5sqrt 3 x + 5` then `p(5 sqrt 3)`.
`p(x) = x^2 - 7 sqrt 7 x + 3 "then " p(7 sqrt 7) = ?`
For which the value of m, x + 3 is the factor of the polynomial x3 − 2mx + 21?
At the end of the year 2016, the population of villages Kovad, Varud, Chikhali is 5x2 - 3y2, 7y2 + 2xy and 9x2 + 4xy respectively. At the beginning of the year 2017, x2 + xy - y2, 5xy and 3x2 + xy persons from each of the three villages respectively went to another village for education then what is the remaining total population of these three villages?
The sum of the polynomials p(x) = x3 – x2 – 2, q(x) = x2 – 3x + 1