Advertisements
Advertisements
प्रश्न
If `p(m) = m^3 + 2m^2 - m + 10` then `p(a) + p(-a) =` ?
उत्तर
`p(m) = m^3 + 2m^2 - m + 10`
`therefore p(a) = a^3 + 2a^2 - a +10` ...(1)
Also,
`p(-a) = (-a)^3 + 2(-a)^2 - (-a)+10`
`=> p(-a) = -a^3+ 2a^2 + a + 10 ` ...(2)
Adding (1) and (2), we get
`p(a) + p(-a)`
`= (a^3 + 2a^2 - a +10) + (-a^3+ 2a^2 + a + 10)`
`= a^3 - a^3 + 2a^2 + 2a^2 - a + a + 10 + 10`
`= 4a^2 + 20`
` therefore p(a) + p(-a) = 4a^2 + 20 `
APPEARS IN
संबंधित प्रश्न
For x = 0 find the value of the polynomial x2 - 5x + 5.
Find the value of the polynomial 2x - 2x3 + 7 using given values for x.
x = -1
For the following polynomial, find p(1), p(0) and p(-2).
`p(x) = x^3`
For the following polynomial, find p(1), p(0) and p(-2).
p(y) = y2 − 2y + 5
For the following polynomial, find p(1), p(0) and p(-2).
p(x) = x4 − 2x2 − x
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
For the polynomial mx2 − 2x + 3 if p(−1) = 7 then find m.
If `p(x) = 2x^2 - 5sqrt 3 x + 5` then `p(5 sqrt 3)`.
`p(x) = x^2 - 7 sqrt 7 x + 3 "then " p(7 sqrt 7) = ?`
Find the value of the polynomial f(y) = 6y – 3y2 + 3 at y = 0