Advertisements
Advertisements
प्रश्न
For the following polynomial, find p(1), p(0) and p(-2).
p(x) = x4 − 2x2 − x
उत्तर
p(x) = x4 − 2x2 − x
∴ p(1) = (1)4 − 2 × (1)2 − 1
= 1 − 2 − 1
= −2
∴ p(0) = (0)4 − 2 × (0)2 − 0
= 0 − 0 − 0
= 0
∴ p(−2) = (−2)4 − 2 × (−2)2 − (−2)
= 16 − 2 × 4 + 2
= 16 − 8 + 2
= 10
APPEARS IN
संबंधित प्रश्न
For x = 0 find the value of the polynomial x2 - 5x + 5.
If `p(m) = m^3 + 2m^2 - m + 10` then `p(a) + p(-a) =` ?
Find the value of the polynomial 2x − 2x3 + 7 using given values for x.
x = 3
Find the value of the polynomial 2x - 2x3 + 7 using given values for x.
x = -1
For the following polynomial, find p(1), p(0) and p(-2).
p(y) = y2 − 2y + 5
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
If `p(x) = 2x^2 - 5sqrt 3 x + 5` then `p(5 sqrt 3)`.
`p(x) = x^2 - 7 sqrt 7 x + 3 "then " p(7 sqrt 7) = ?`
If x - 1 is a factor of the polynomial `3x^2 + mx ` then find the value of m.
Find the value of the polynomial f(y) = 6y – 3y2 + 3 at y = 0