हिंदी

If Sn Denotes the Sum of First N Terms of an A.P., Prove that S30 = 3[S20 − S10] - Mathematics

Advertisements
Advertisements

प्रश्न

If Sn denotes the sum of first n terms of an A.P., prove that S30 = 3[S20S10]

उत्तर

We know

Sn=`n/2`[2a+(n1)d]

S20=`20/2`[2a+(201)d] and S10=`10/2`[2a+(101)d]

S20=10[2a+19d] and S10=5[2a+9d]

S20=20a+190d and S10=10a+45d

3(S20S10)=3(20a+190d10a45d)

= 3(10a+145d)

= 15(2a+29d)

=`30/2`[2a+(301)d]

= S30

∴ S30=3(S20S10)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Delhi Set 3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×