हिंदी

If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.

योग

उत्तर

Let a and r be the 1st term and common ratio of the G.P. respectively.

∴ Sn = `"a"(("r"^"n" - 1)/("r" - 1)), "S"_(2"n") = "a"(("r"^(2"n") - 1)/("r" - 1)), "S"_(3"n") = "a"(("r"^(3"n") - 1)/("r" - 1))`

∴ S2n – Sn = `"a"(("r"^(2"n") - 1)/("r" - 1)) - "a"(("r"^"n" - 1)/("r" - 1))`

= `"a"/("r" - 1)("r"^(2"n") - 1 - "r"^"n" + 1)`

= `"a"/("r" - 1)("r"^(2"n") - "r"^"n")`

= `"ar"^"n"/("r" - 1) ("r"^"n" - 1)`

∴ S2n – Sn = `"r"^"n"*("a"("r"^"n" - 1))/("r" - 1)`     ....(i)

S3n – S2n = `"a"(("r"^(3"n") - 1)/("r" - 1)) - "a"(("r"^(2"n") - 1)/("r" - 1))`

= `"a"/("r" - 1)("r"^(3"n") - 1 - "r"^(2"n") + 1)`

= `"a"/("r" - 1)("r"^(3"n") - "r"^(2"n"))`

= `"a"/("r" - 1)*"r"^(2"n")("r"^"n" - 1)`

= `"a"*(("r"^"n" - 1)/("r" - 1))*"r"^(2"n")`

∴ Sn(S3n – S2n) = `["a"*(("r"^"n" - 1)/("r" - 1))]["a"*(("r"^"n" - 1)/("r" - 1))"r"^(2"n")]`

= `["r"^"n"*("a"("r"^"n" - 1))/("r" - 1)]^2`

∴ Sn(S3n – S2n) = (S2n – Sn)2   ....[From (i)]

shaalaa.com
Sum of the First n Terms of a G.P.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Sequences and Series - EXERCISE 4.2 [पृष्ठ ५५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 4 Sequences and Series
EXERCISE 4.2 | Q 10) | पृष्ठ ५५

संबंधित प्रश्न

For a G.P., if a = 2, r = `-2/3`, find S6.


For a G.P., if the sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.


For a G.P., if t3 = 20, t6 = 160, find S7.


If for a sequence `t_n = 5^(n-3) / 2^(n-3),` show that the sequence is a G.P.

Find its first term and the common ratio.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


If for a sequence, tn = `(5^(n-3))/(2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.


If for a sequence, `t_n=(5^n-3)/(2^n-3)` show that the sequence is a G.P.

Find its first term and the common ratio.


If Sn, S2n, S3n are the sum of n, 2n, and 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.


If for a sequence, tn = `5^(n-3)/2^(n-3)`, show that the sequence is a G.P.

Find its first term and the common ratio.


If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.


If for a sequence, `t_n=5^(n-3)/2^(n-3)`, show that the sequence is a G.P.

Find its first term and the common ratio.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n − S2n) = (S2n − Sn)2.


If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.


If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2


If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.


If `S_n,  S_(2n),  S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×