हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds - Mathematics

Advertisements
Advertisements

प्रश्न

If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds

योग

उत्तर

tan2 θ = 1 – k2

1 + tan2 θ = 1 + 1 – k2

sec2θ = (2 – k2)

sec2θ = `(2 – "k"^2)^(1/2` 

`sectheta + tan^3theta  "cosec"theta = 1/costheta + (sin^3theta)/(cos^3theta)*1/sintheta`

= `1/costheta + (sin^2theta)/(cos^3theta)`

= `1/costheta (1 + (sin^2theta)/(cos^2theta))`

= `sec theta (1 + tan^2 theta)`

= `sec theta * sec^2 theta`

= sec3θ

= `(2 - "k"^2)^(3/2)`

tan2 θ = 1 – k2

When θ = `π/2`, tan `π/2` = ∞, not defined 2

When θ = 0, tan2 0 = 1 – k2

1 – k2 = 0

⇒ k2 = 1

⇒ k = ± 1

When θ = 45°, tan2 45° = 1 – k2

1 – k2 = 1

⇒ – k2 = 0

⇒ k = 0

When θ > 45°, say θ = 60°

tan2 60° = 1 – k2

= `(sqrt(3))^2`

= 1 – k2

3 = 1 – k2 

⇒ k2 = 1 – 3

= – 2

∴ θ > 45°, k2 is negative

⇒ k is imaginary

∴ k lies between – 1 and 1

⇒ k ∈ [– 1, 1]

shaalaa.com
A Recall of Basic Results
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.1 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.1 | Q 8 | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×