हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If x = nnnn∑n=0∞cos2nθ,y=∑n=0∞sin2nθ and z = nnn∑n=0∞cos2nθ,sin2nθ,0<θ<π2, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = 1/(1 - x), where |x| < 1] - Mathematics

Advertisements
Advertisements

प्रश्न

If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]

योग

उत्तर

x = `1 + cos^2theta + cos^4theta + cos^6theta + .... = 1/(1 - cos^2theta) = 1/(sin^2theta)`

y = `1 + sin^2theta + sin^4theta + sin^6theta + ...... = 1/(1 - sin^2theta) = 1/(cos^2theta)`

z = `1 + cos^2theta sin^2theta + cos^4theta sin^4theta + ...... = 1/(1 - cos^2thetasin^2theta)`

L.H.S = xyz = `1/(sin^2theta)*1/(cos^2theta)*1/(1 - sin^2thetacos^2theta)`

= `1/(sin^2theta cos^2theta(1 - sin^2thetacos^2theta))`  ......(1)

R.H.S = x + y + z = `1/(sin^2theta) + 1/(cos^2theta) + 1/(1 - sin^2thetacos^2theta)`

= `(1/(sin^2theta) + 1/(cos^2theta)) + (1/(1 - sin^2thetacos^2theta))`

= `(cos^2theta + sin^2theta)/(sin^2thetacos^2theta) + 1/(1 - sin^2thetacos^2theta)`

= `1/(sin^2thetacos^2theta) + 1/(1 - sin^2thetacos^2theta)`

= `(1 - sin^2thetacos^2theta + sin^2thetacos^2theta)/((sin^2thetacos^2theta)(1 - sin^2thetacos^2theta))`

= `1/((sin^2thetacos^2theta)(1 - sin^2thetacos^2theta))`  .....(2)

(1) = (2) ⇒ L.H.S = R.H.S

(i.e) xyz = x + y + z

shaalaa.com
A Recall of Basic Results
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.1 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.1 | Q 7 | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×