Advertisements
Advertisements
प्रश्न
If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]
उत्तर
x = `1 + cos^2theta + cos^4theta + cos^6theta + .... = 1/(1 - cos^2theta) = 1/(sin^2theta)`
y = `1 + sin^2theta + sin^4theta + sin^6theta + ...... = 1/(1 - sin^2theta) = 1/(cos^2theta)`
z = `1 + cos^2theta sin^2theta + cos^4theta sin^4theta + ...... = 1/(1 - cos^2thetasin^2theta)`
L.H.S = xyz = `1/(sin^2theta)*1/(cos^2theta)*1/(1 - sin^2thetacos^2theta)`
= `1/(sin^2theta cos^2theta(1 - sin^2thetacos^2theta))` ......(1)
R.H.S = x + y + z = `1/(sin^2theta) + 1/(cos^2theta) + 1/(1 - sin^2thetacos^2theta)`
= `(1/(sin^2theta) + 1/(cos^2theta)) + (1/(1 - sin^2thetacos^2theta))`
= `(cos^2theta + sin^2theta)/(sin^2thetacos^2theta) + 1/(1 - sin^2thetacos^2theta)`
= `1/(sin^2thetacos^2theta) + 1/(1 - sin^2thetacos^2theta)`
= `(1 - sin^2thetacos^2theta + sin^2thetacos^2theta)/((sin^2thetacos^2theta)(1 - sin^2thetacos^2theta))`
= `1/((sin^2thetacos^2theta)(1 - sin^2thetacos^2theta))` .....(2)
(1) = (2) ⇒ L.H.S = R.H.S
(i.e) xyz = x + y + z
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
328°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
1150°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is
Choose the correct alternative:
Which of the following is not true?