Advertisements
Advertisements
प्रश्न
If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds
उत्तर
tan2 θ = 1 – k2
1 + tan2 θ = 1 + 1 – k2
sec2θ = (2 – k2)
sec2θ = `(2 – "k"^2)^(1/2`
`sectheta + tan^3theta "cosec"theta = 1/costheta + (sin^3theta)/(cos^3theta)*1/sintheta`
= `1/costheta + (sin^2theta)/(cos^3theta)`
= `1/costheta (1 + (sin^2theta)/(cos^2theta))`
= `sec theta (1 + tan^2 theta)`
= `sec theta * sec^2 theta`
= sec3θ
= `(2 - "k"^2)^(3/2)`
tan2 θ = 1 – k2
When θ = `π/2`, tan `π/2` = ∞, not defined 2
When θ = 0, tan2 0 = 1 – k2
1 – k2 = 0
⇒ k2 = 1
⇒ k = ± 1
When θ = 45°, tan2 45° = 1 – k2
1 – k2 = 1
⇒ – k2 = 0
⇒ k = 0
When θ > 45°, say θ = 60°
tan2 60° = 1 – k2
= `(sqrt(3))^2`
= 1 – k2
3 = 1 – k2
⇒ k2 = 1 – 3
= – 2
∴ θ > 45°, k2 is negative
⇒ k is imaginary
∴ k lies between – 1 and 1
⇒ k ∈ [– 1, 1]
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
328°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
1150°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If sin θ + cos θ = m, show that cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`, where m2 ≤ 2
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is