Advertisements
Advertisements
प्रश्न
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
उत्तर
Given `cot theta(1 + sin theta)` = 4 m
`cot theta(1 - sin theta)` = 4 n
(4m)2 – (4n)2 = `cot^2theta(1 + sintheta)^2 - cot^2theta(1 - sintheta)^2`
16m2 – 16n2 = `cot^2theta[(1 + sintheta)^2 - (1 - sin theta)^2]`
16(m2 – n2) = `cot2theta [(1 + 2sintheta + sin^2theta) - (1 - 2sintheta + sin^2theta)]`
16(m2 – n2) = `cot^2theta [1 + 2sintheta + sin^2theta - 1 + 2sintheta - sin^2theta]`
16(m2 – n2) = `cot^2theta*4sintheta`
4(m2 – n2) = `cot^2theta sintheta`
Squaring on both sides
16(m2 – n2)2 = `cot^4theta sin^2theta`
16(m2 – n2)2 = `cot^2theta*cot^2theta sin^2theta`
16(m2 – n2)2 = `cot^2theta("cosec"^2theta - 1) sin^2theta`
16(m2 – n2)2 = `cot^2theta ("cosec"^2theta sin^2theta - sin^2theta)`
16(m2 – n2)2 = `cot^2theta(1 - sin^2theta)`
16(m2 – n2)2 = `cot^2theta cos^2theta` ......(1)
4m . 4n = `cot theta(1 + sin theta) cottheta(1 - sin theta)`
16 mn = `cot^2theta(1 - sin^2theta)`
16 mn = `cot^2theta cos^2theta` ......(2)
Equations (1) and (2), we have
16(m2 – n2)2 = 16 mn
(m2 – n2)2 = mn
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
328°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If sin θ + cos θ = m, show that cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`, where m2 ≤ 2
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1
If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is