Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
उत्तर
Given sec θ + tan θ = p
We have sec2 θ – tan2 θ = 1
(sec θ + tan θ) (sec θ – tan θ) = 1
p(sec θ – tan θ) = 1
sec θ – tan θ = `1/"p"`
(sec θ – tan θ) + (sec θ – tan θ) = `"p" + 1/"p"`
2 sec θ = `(1 + "p"^2)/"p"`
sec θ = `(1 + "p"^2)/(2"p")`
(sec θ + tan θ) – (sec θ – tan θ) = `"p" - 1/"p"`
sec θ + tan θ – sec θ + tan θ = `("p"^2 - 1)/"p"`
2 tan θ = `("p"^2 - 1)/"p"`
tan θ = `("p"^2 - 1)/(2"p")`
`(sin theta)/(cos theta) = ("p"^2 - 1)/(2"p")`
`sin theta* sec theta = ("p"^2 - 1)/(2"p")`
`sin theta ((1 + "p"^2)/(2"p")) = ("p"^2 - 1)/(2"p")`
sin θ = `("p"^2 - 1)/(2"p") xx (2"p")/(1 + "p"^2)`
sin θ = `("p"^2 - 1)/("p"^2 + 1)`
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
328°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
1150°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
Which of the following is not true?