Advertisements
Advertisements
Question
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
Solution
Given sec θ + tan θ = p
We have sec2 θ – tan2 θ = 1
(sec θ + tan θ) (sec θ – tan θ) = 1
p(sec θ – tan θ) = 1
sec θ – tan θ = `1/"p"`
(sec θ – tan θ) + (sec θ – tan θ) = `"p" + 1/"p"`
2 sec θ = `(1 + "p"^2)/"p"`
sec θ = `(1 + "p"^2)/(2"p")`
(sec θ + tan θ) – (sec θ – tan θ) = `"p" - 1/"p"`
sec θ + tan θ – sec θ + tan θ = `("p"^2 - 1)/"p"`
2 tan θ = `("p"^2 - 1)/"p"`
tan θ = `("p"^2 - 1)/(2"p")`
`(sin theta)/(cos theta) = ("p"^2 - 1)/(2"p")`
`sin theta* sec theta = ("p"^2 - 1)/(2"p")`
`sin theta ((1 + "p"^2)/(2"p")) = ("p"^2 - 1)/(2"p")`
sin θ = `("p"^2 - 1)/(2"p") xx (2"p")/(1 + "p"^2)`
sin θ = `("p"^2 - 1)/("p"^2 + 1)`
APPEARS IN
RELATED QUESTIONS
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1
If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is