Advertisements
Advertisements
Question
If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1
Solution
`(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha) = (cos^2beta*cos^2beta)/(cos^2alpha) + (sin^2beta*sin^2beta)/(sin^2alpha)` ......(1)
Given `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1
`(cos^4alpha*sin^2beta + sin^4alpha*cos^2beta)/(cos^2beta sin^2beta)` = 1
`cos^4alpha sin^2beta + sin^4alpha*cos^2beta = cos^2beta sin^2beta`
`cos^4alpha(1 - cos^2beta) + (1 - cos^2alpha)^2 cos^2beta = cos^2beta(1 - cos^2beta)`
`cos^4alpha - cos^4alpha cos^2beta + (1 - 2cos^2alpha + cos^4alpha) cos^2beta = cos^2beta - cos^4beta`
`cos^4alpha - cos^4alpha cos^2beta + cos^2beta - 2cos^2alpha cos^2beta + cos^4alpha cos^2beta = cos^2beta - cos^4beta`
`cos^4alpha - 2cos^2alpha cos^2beta + cos^4beta` = 0
`(cos^2alpha - cos^2beta)^2` = 0
`cos^2alpha = cos^2beta` ......(2)
`1 - sin^2alpha = 1 - sin^2beta`
`sin^2alpha = sin^2beta` ......(3
Using equation (2) and (3), equation (1) becomes
`(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha) = (cos^2beta*cos^2beta)/(cos^2alpha) + (sin^2beta*sin^2beta)/(sin^2alpha)`
= `(cos^2beta*cos^2alpha)/(cos^2alpha) + (sin^2beta*sin^2alpha)/(sin^2alpha)`
= `cos^2beta + sin^2beta`
= 1
APPEARS IN
RELATED QUESTIONS
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
1150°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
If sin θ + cos θ = m, show that cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`, where m2 ≤ 2
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
Which of the following is not true?