English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m - Mathematics

Advertisements
Advertisements

Question

If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m

Sum

Solution

Given `cot theta(1 + sin theta)` = 4 m

`cot theta(1 - sin theta)` = 4 n

(4m)2 – (4n)2 = `cot^2theta(1 + sintheta)^2 - cot^2theta(1 - sintheta)^2`

16m2 – 16n2 = `cot^2theta[(1 + sintheta)^2 - (1 - sin theta)^2]` 

16(m2 – n2) = `cot2theta [(1 + 2sintheta + sin^2theta) - (1 - 2sintheta + sin^2theta)]` 

16(m2 – n2) = `cot^2theta [1 + 2sintheta + sin^2theta - 1 + 2sintheta - sin^2theta]`

16(m2 – n2) = `cot^2theta*4sintheta`

4(m2 – n2) = `cot^2theta sintheta`

Squaring on both sides

16(m2 – n2)2 = `cot^4theta sin^2theta`

16(m2 – n2)2 = `cot^2theta*cot^2theta sin^2theta`

16(m2 – n2)2 = `cot^2theta("cosec"^2theta - 1) sin^2theta`

16(m2 – n2)2 = `cot^2theta ("cosec"^2theta sin^2theta - sin^2theta)`

16(m2 – n2)2 = `cot^2theta(1 - sin^2theta)`

16(m2 – n2)2 = `cot^2theta cos^2theta`  ......(1)

4m . 4n = `cot theta(1 + sin theta) cottheta(1 - sin theta)`

16 mn = `cot^2theta(1 - sin^2theta)`

16 mn = `cot^2theta cos^2theta`  ......(2)

Equations (1) and (2), we have

16(m2 – n2)2 = 16 mn

(m2 – n2)2 = mn

shaalaa.com
A Recall of Basic Results
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.1 [Page 92]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.1 | Q 10 | Page 92
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×