Advertisements
Advertisements
Question
If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
Solution
a cos θ – b sin θ = c
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2 = a2 cos2 θ – 2 ab sin θ cos θ + b2 sin2θ + a2 sin2 θ + b2 cos2 θ + 2 ab sin θ cos θ
c2 + (a sin 0 + b cos θ )2 = a2 cos2 θ + a2 sin2 θ + b2 sin2 θ + b2cos2θ
= a2 (cos2θ + sin2θ) + b2(sin2θ + cos2θ)
c2 + (a sin θ + b cos θ)2 = a2 + b2
(a sin θ + b cos θ)2 = a2 + b2 – c2
a sin θ + b cos θ = `+- sqrt("a"^2 + "b"^2 - "c"^2)`
APPEARS IN
RELATED QUESTIONS
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
– 55°
Identify the quadrant in which an angle given measure lies
328°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
1150°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 270°
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]
If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is
Choose the correct alternative:
Which of the following is not true?