मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c - Mathematics

Advertisements
Advertisements

प्रश्न

Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c

बेरीज

उत्तर

Taking sec θ = x and tan θ = y we get the equations as

ax – cy = b    .....(1)

bx + dy = c   .....(2)

(1) × d ⇒ adx – cdy = bd  ....(3)

(2) × c ⇒ bcx + cdy = c2  ......(4)

(3) + (4) ⇒ x(ad + bc) = bd + c2 

∴ x = `("bd" + "c"^2)/("ad" + "bc")`

(i.e) sec θ = `("bd"  "c")/("ad"  "bc")`

(2) × a ⇒ ax + ay = ac   ......(5)

Now (1) × b ⇒ abx – bcy = b2   ......(6)

(5) – (6) ⇒ y(ad + bc) = ac – b2 

⇒ y = `("ac" - "b"^2)/("ad" + "bc")`

(i.e) tan θ = `("ac" - "b"^2)/("ad" + "bc")`

∴ sec θ = `("bd" + "c"^2)/("ad" + "bc")` and tan θ = `("ac" + "b"^2)/("ad" + "bc")`

We know sec2θ – tan2θ = 1

⇒ `(("bd" + "c"^2)^2)/(("ad" + "bc")^2) - (("ac" - "b"^2)^2)/(("ad" + "bc")^2` = 1

⇒ `(("bd" + "c"^2)^2 - ("ac" - "b"^2)^2)/(("ad" + "bc")^2` = 1

⇒ (bd+ c2)2 – (ac – b2)2 = (ad +bc)2

⇒ (bd+ c2)2 – (ad + bc)2 = (ac +b2)2

shaalaa.com
A Recall of Basic Results
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.1 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.1 | Q 12 | पृष्ठ ९२

संबंधित प्रश्‍न

Identify the quadrant in which an angle given measure lies
25°


Identify the quadrant in which an angle given measure lies
825°


Identify the quadrant in which an angle given measure lies
– 55°


Identify the quadrant in which an angle given measure lies
328°


Identify the quadrant in which an angle given measure lies
– 230°


For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°


For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°


For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°


If a cos θ − b sin θ = c, show that a sin θ + b cos θ = `+-  sqrt("a"^2 + "b"^2 - "c"^2)`


If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1


If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y


If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]


If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds


If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m


Choose the correct alternative:
Which of the following is not true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×