Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = m, show that cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`, where m2 ≤ 2
उत्तर
sin θ + cos θ = m
(sin θ + cos θ)2 = m2
sin2θ + cos2θ + 2 sin θ cos θ = m2
1 + 2 sin θ cos θ = m2
2 sin θ cos θ = m2 – 1
sin θ cos θ = `("m"^2 - 1)/2` ......(1)
cos6θ + sin6θ = (cos2θ)3 + (sin2θ)3
= (cos2θ) + sin2θ) ....`[(cos^2θ)^2 - cos^2θ*sin^2θ + (sin^2θ)^2]`
= (cos2θ)2 – cos2θ sin2θ + (sin2θ)2
= (cos2θ + sin2θ)2 – 2 cos2θ sin2θ – cos2θ sin2θ
= (cos2θ + sin2θ)2 – 3 cos2θ sin2θ
= 1 – 3 cos2θ sin2θ
= `1 - 3(("m"^2 - 1)/2)^2`
= `1 - 3 ("m"^2 - 1)^2/4`
cos6θ + sin6θ = `(4 - 3("m"^2 - 1)^2)/4`
APPEARS IN
संबंधित प्रश्न
Identify the quadrant in which an angle given measure lies
25°
Identify the quadrant in which an angle given measure lies
825°
Identify the quadrant in which an angle given measure lies
– 230°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
395°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
525°
For each given angle, find a coterminal angle with measure of θ such that 0° ≤ θ < 360°
– 450°
If `(cos^4α)/(cos^2β) + (sin^4α)/(sin^2β)` = 1, prove that sin4α + sin4β = 2 sin2α sin2β
If `(cos^4alpha)/(cos^2beta) + (sin^4alpha)/(sin^2beta)` = 1, prove that `(cos^4beta)/(cos^2alpha) + (sin^4beta)/(sin^2alpha)` = 1
If y = `(2sinalpha)/(1 + cosalpha + sinalpha)`, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` = y
If x = `sum_("n" = 0)^oo cos^(2"n") theta, y = sum_("n" = 0)^oo sin^(2"n") theta` and z = `sum_("n" = 0)^oo cos^(2"n") theta, sin^(2"n") theta, 0 < theta < pi/2`, then show that xyz = x + y + z. [Hint: Use the formula 1 + x + x2 + x3 + . . . = `1/(1 - x), where |x| < 1]
If tan2 θ = 1 – k2, show that sec θ + tan3 θ cosec θ = (2 – k2)3/2. Also, find the values of k for which this result holds
If sec θ + tan θ = p, obtain the values of sec θ, tan θ and sin θ in terms of p
If cot θ(1 + sin θ) = 4m and cot θ(1 – sin θ) = 4n then prove that (m2 – n2)2 = m
If cosec θ – sin θ = a3 and sec θ – cos θ = b3, then prove that a2b2 (a2 + b2) = 1
Eliminate θ from the equations a sec θ – c tan θ = b and b sec θ + d tan θ = c
Choose the correct alternative:
The maximum value of `4sin^2x + 3cos^2x + sin x/2 + cos x/2` is
Choose the correct alternative:
Which of the following is not true?