हिंदी

If (x + 1) is a factor of 2x3 + ax2 + 2bx + 1, then find the values of a and b given that 2a – 3b = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

If (x + 1) is a factor of 2x3 + ax2 + 2bx + 1, then find the values of a and b given that 2a – 3b = 4.

योग

उत्तर

Given that, (x + 1) is a factor of f(x) = 2x3 + ax2 + 2bx + 1, then f(–1) = 0

if (x + a) is a factor of f(x) = ax2 + bx + c, then f(–a) = 0

⇒ 2(–1)3 + a(–1)2 + 2b(–1) + 1 = 0

⇒ –2 + a – 2b + 1 = 0

⇒ a – 2b – 1 = 0   ......(i)

Also, 2a – 3b = 4

⇒ 3b = 2a – 4

⇒ b = `((2a - 4)/3)`

Now, put the value of b in equation (i), we get

`a - 2((2a - 4)/3) - 1` = 0

⇒ 3a – 2(2a – 4) – 3 = 0

⇒ 3a – 4a + 8 – 3 = 0

⇒ –a + 5 = 0

⇒ a = 5

Now, put the value of a in equation (i), we get

5 – 2b – 1 = 0

⇒ 2b = 4

⇒ b = 2

Hence, the required values of a and b are 5 and 2, respectively.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Pair of Liner Equation in Two Variable - Exercise 3.3 [पृष्ठ २७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 3 Pair of Liner Equation in Two Variable
Exercise 3.3 | Q 14 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×