Advertisements
Advertisements
प्रश्न
If x = 2, y = 5 and z = 4, find the value of the following:
`("x"^2"y"^2"z"^2)/"xz"`
उत्तर
`("x"^2"y"^2"z"^2)/"xz"`
= `((2)^2xx(5)^2xx(4)^2)/(2xx4)`
= (2)2−1 × (5)2 × (4)2−1
= 2 × 5 × 5 × 4
= 200
APPEARS IN
संबंधित प्रश्न
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
y × d = .............
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
xy − bd = ..............
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
xz + cd = ...................
Simplify:
10m + (4n − 3n) − 5n
Simplify:
(15b − 6b) − (8b + 4b)
Fill in the blank:
7x + 2z + 4y − 3 = − 3 + 4y + (.............)
Insert the bracket as indicated:
a − 3b + 5c = a − (..............)
If x = 3, y = 2 and z = 1; find the value of xy + y2z – 4zx
Simplify:
5 (x + 3y) – 2 (3x – 4y)
If x = − 3, find the value of 2x3 + 8x2 – 15.