Advertisements
Advertisements
प्रश्न
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.
उत्तर
Number of tickets that are not getting a prize
= 10000 – 10
= 9990
∵ Total number of tickets = 10000
Number of ways of getting 2 tickets out of 9990 without prize = `""^9990C_2`
There are 10000 tickets in total.
Number of ways of getting 2 tickets out of them = `""^10000C_2`
Probability of getting two tickets with no prize = `(""^9990C_2)/(""^10000C_2)`.
संबंधित प्रश्न
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
A dice is thrown. Find the probability of getting a prime number
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting:
8 as the sum
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11
Two dice are thrown. Find the odds in favour of getting the sum 5.
Two dice are thrown. Find the odds in favour of getting the sum What are the odds against getting the sum 6?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?
100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.