हिंदी

If a and B Are Two Events Associated with a Random Experiment Such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, Find P (A ∩ B). - Mathematics

Advertisements
Advertisements

प्रश्न

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).

उत्तर

Given:
P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5
By addition theorem, we have:
P (A ∪ B) = P(A) + P (B) -  P (A ∩ B)
⇒ 0.5 = 0.3 + 0.4 -P (A ∩ B)
⇒ 0.5 = 0.7  - P (A ∩ B)
 P (A ∩ B) = 0.7  - 0.5
                     = 0.2
Hence, P (A ∩ B) = 0.2

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.4 [पृष्ठ ६८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.4 | Q 2 | पृष्ठ ६८

संबंधित प्रश्न

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.


Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.


A dice is thrown. Find the probability of getting a prime number


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×