हिंदी

A Person Write 4 Letters and Addresses 4 Envelopes. If the Letters Are Placed in the Envelopes at Random, Then Probability that All Letters Are Not Placed in the Right Envelopes, is (A) 1/4 (B) 11/24 - Mathematics

Advertisements
Advertisements

प्रश्न

A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is

विकल्प

  • 1/4

  • 11/24

  •  15/24

  • 23/24

     
MCQ

उत्तर

\[\frac{23}{24}\] Total number of ways of placing four letters in 4 envelops = 4! = 24
All the letters can be dispatched in the right envelops in only one way. Therefore, the probability that all the letters are placed in the right envelops is \[\frac{1}{24}\] . 

Hence, probability that all the letters are not placed in the right envelops = \[1 - \frac{1}{24} = \frac{23}{24}\]

 

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.6 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.6 | Q 19 | पृष्ठ ७२

संबंधित प्रश्न

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?

 

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×