हिंदी

In a Simultaneous Throw of a Pair of Dice, Find the Probability of Getting:(Xvi) a Total Greater than 8. - Mathematics

Advertisements
Advertisements

प्रश्न

In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

उत्तर

We know that in a single throw of two dices, the total number of possible outcomes is (6 × 6) = 36.
Let S be the sample space.
Then n(S) = 36

 Let E16 = event of getting a total greater than 8
Then E16 = {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)}
         i.e. n (E16) = 10

\[\therefore P\left( E_{16} \right) = \frac{n\left( E_{16} \right)}{n\left( S \right)} = \frac{10}{36} = \frac{5}{18}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.3 | Q 2.16 | पृष्ठ ४५

संबंधित प्रश्न

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting:

 2 or 4


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×