Advertisements
Advertisements
प्रश्न
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
उत्तर
Let A and B represent the events of opted NCC and NSS respectively.
Total number of students = 60
Number of students who opted for NCC = 30
Probability of being selected for NCC P(A) = `30/60 = 1/2`
Number of students who opted for N.S.S. = 32
∴ Probability of being selected for N.S.S. P(B) = `32/60`
Number of people who opted for NCC and NSS = 24
Probability of opted for NCC and NSS = `24/60`
(i) Probability of being selected for NCC and NSS P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= `30/60 + 32/60 - 24/60`
= `38/60`
= `19/30`
(ii) The probability of not selecting either NCC or NSS
P(A’ ∩ B’) = P[(A ∪ B)’]
= 1 – P(A ∪ B)
= `1 - 19/30`
= `11/30`
(iii) The student has opted for NSS but not NCC
Its probability = P(A’ ∩ B) = P(B) – P(A ∩ B)
= `32/60 - 24/60`
= `8/60`
= `2/15`
APPEARS IN
संबंधित प्रश्न
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
A dice is thrown. Find the probability of getting a prime number
A dice is thrown. Find the probability of getting:
2 or 4
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting an even number on first
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 4.
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.
Find the probability of getting 2 or 3 tails when a coin is tossed four times.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
The probability that a leap year will have 53 Fridays or 53 Saturdays is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is