Advertisements
Advertisements
प्रश्न
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
उत्तर
Let A and B represent the events of opted NCC and NSS respectively.
Total number of students = 60
Number of students who opted for NCC = 30
Probability of being selected for NCC P(A) = `30/60 = 1/2`
Number of students who opted for N.S.S. = 32
∴ Probability of being selected for N.S.S. P(B) = `32/60`
Number of people who opted for NCC and NSS = 24
Probability of opted for NCC and NSS = `24/60`
(i) Probability of being selected for NCC and NSS P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= `30/60 + 32/60 - 24/60`
= `38/60`
= `19/30`
(ii) The probability of not selecting either NCC or NSS
P(A’ ∩ B’) = P[(A ∪ B)’]
= 1 – P(A ∪ B)
= `1 - 19/30`
= `11/30`
(iii) The student has opted for NSS but not NCC
Its probability = P(A’ ∩ B) = P(B) – P(A ∩ B)
= `32/60 - 24/60`
= `8/60`
= `2/15`
APPEARS IN
संबंधित प्रश्न
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
A dice is thrown. Find the probability of getting a prime number
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting exactly two heads
Three coins are tossed together. Find the probability of getting at least two heads
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.5 | 0.35 | ..... | 0.7 |
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.