Advertisements
Advertisements
प्रश्न
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
पर्याय
2/19
3/29
17/19
4/19
उत्तर
17/19
Number of ways in which we can choose three distinct integers from 20 integers = 20C3= 1140
We know that, if we take three odd numbers, there product will always be an odd number.
Out of 20 consecutive integers, 10 are even and 10 are odd integers.
Number of ways in which we can choose three distinct odd integers from 10 odd integers= 10C3 = 120
P(product is even) = 1 - P(product is odd)
= \[1 - \frac{120}{1140} = \frac{1140 - 120}{1140} = \frac{1020}{1140} = \frac{17}{19}\]
APPEARS IN
संबंधित प्रश्न
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that
- you both enter the same sections?
- you both enter the different sections?
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
A dice is thrown. Find the probability of getting a prime number
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting:
8 as the sum
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting at least two heads
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 5.
Two dice are thrown. Find the odds in favour of getting the sum What are the odds against getting the sum 6?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
Find the probability of getting 2 or 3 tails when a coin is tossed four times.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is