मराठी

Ive Persons Entered the Lift Cabin on the Ground Floor of an 8 Floor House. Suppose that Each of Them Independently and with Equal Probability Can Leave the Cabin at Any Floor Beginning with the First - Mathematics

Advertisements
Advertisements

प्रश्न

Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is

पर्याय

  •  \[\frac{^{7}{}{P}_5}{7^5}\]

     

  • \[\frac{7^5}{^{7}{}{P}_5}\]

     

  •  \[\frac{6}{^{6}{}{P}_5}\]

     

  •  \[\frac{^{5}{}{P}_5}{5^5}\]

     

MCQ

उत्तर

 \[\frac{^{7}{}{P}_5}{7^5}\]

Since, it is an eight-storey building.
So, there are 7 possible options for them in 7 floors in total if ground floor is not considered.
Hence, total possible outcomes = 7× 7× 7 × 7 × 7= 75
Thus, number of ways in which 5 persons can leave from seven floors differently = 7P5
∴ Required probability = \[\frac{^{7}{}{P}_5}{7^5}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.6 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.6 | Q 28 | पृष्ठ ७२

संबंधित प्रश्‍न

A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?

 

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×